

A2FM Series Axial piston fixed motor

Product show and brief introduction

Open and closed circuits

Series 6 Sizes 10...180 Nominal pressure 40MPa Maxmum pressure 45MPa Metric version

Features

- Large variety of available nominal sizes allows exact adjustment to the application
- High power density
- Very high total efficiency
- High starting efficiency
- Working ports SAE flange or thread
- Optional with integrated pressure relief valve
- Optional with mounted addifitonal valve:counterba-

lance valve (BVD/BVE),flushing and boost-pressure

valve

— Bent-axis design

Model Code

A2F	М	80	/6	1	W	-V	А	В	010
Axial piston unit	Mode of operation	Size (mL/r)	Series	Index	Direction of rotation	Seals	Shaft end	Mounting flange	Service line ports
A2F: Bent axis design, fixed displa- cement	M: Motor	10 12 16 23 28 32 45 56 63 80 90 107 125 160 180	6	1	(Viewed on shaft end) W: Alternating	V: FKM (fluor~ caoutchouc)	See below	B: 4-hole ISO 3019-2	See below

Shaft end

Size		10	12	16	23	28	32	45	56	63	80	90	107	125	160	180
Spined shaft DIN 5480	A	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	/	\checkmark							
	Z	\checkmark	\checkmark	/	\checkmark	\checkmark	/	\checkmark	\checkmark	/	\checkmark	/	\checkmark	/	\checkmark	/
Parallel keyed shaft,	В	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	/	\checkmark							
DIN 6885	Ρ	\checkmark	\checkmark	/	\checkmark	\checkmark	/	\checkmark	\checkmark	/	\checkmark	/	\checkmark	/	\checkmark	/

Service line port¹⁾

Size	10	12	16	23	28	32	45	56	63	80	90	107	125	160	180
010:SAE flange ports A and B,rear	/	/	/	\checkmark											
020:SAE flange ports A and B,at side,opposite	/	/	/	\checkmark											
030:Threaded ports A and B, at side,opposite	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	/	/	/	/	/	/	/	/	/
040:Threaded pord A and B, at side and rear ²⁾	\checkmark	/	/	/	/	/	/								

 $\sqrt{-}$ available / = not available

fastening threads resp.threaded ports are metric
at side (sizes 10...63) or rear thread ports plugged with locking screw

Technical Data

Hydraulic fluid

The A2FM fixed displacement motor is suitable for use with mineral oil.

Viscosity range

We recommend that a viscosity (at operating temperature) for optimum efficiency and service life purposes of

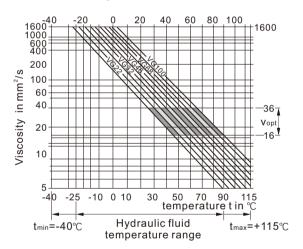
 V_{opt} = optimum viscosity16...36mm²/s

Be chosen, taken the circulation temperature (closed circuit) and tank temperature(open circuit) into account.

Limits of viscosity range

The following values apply in extreme cases:

 $V_{min} = 5 \text{ mm}^2/\text{s}$


short term(t < 3 min)at max.permitted temperature t_{max} =115°C

 $V_{max} = 1600 \text{ mm}^2/\text{s}$

short term(t < 3 min) with cold start(P < 3MPa, $n \le 1000$ rpm tmin=-40°C)

Note that the maximun hydraulic fluid temperature must not be exceeded locally either (e.g.bearing area). The temperature in the bearing area is-depending on pressure and speed-up to 12 K higher than the average case drain temperature.

Selection diagram

Details regarding the choice of hydraulic fluid

The correct choiceof pressure fluid requires knowledge of the operating temperature in relation to the ambient temperature: in a closed circuit the circulation temperature, in an open circuit the tank temperature.

The hydraulic fluid should be selected so that within the operating temperature range, the operating viscosity lies within the optimun range (V_{opt})(see shaded section of the selection diagram). We recommend that the highest possible viscosity range should be chosen in each case.

Example:At an ambient temperature of X°C an operating temperature of 60°C is set in the circuit. In the optimun operating viscosity range(V_{opt}; shaded area) this corresponds to the viscosity classes VG 46 or VG68; to be selected: VG 68.

Please note: The leakage fluid temperature, which is affected by pressure and rotational speed, is alway higher than the circulation temperature or tank temperature. At no point in the system may the temperature be higher than 115 $^{\circ}$ C.

Filtartion

The finer the filtration, the cleaner the fluid and the longer the service life of the axial piston unit.

To ensure proper function of the axial piston unit, the hydraulic fluid must have a cleanliness level of at least

20/18/15 according to ISO 4406.

At very high hydraulic fluid temperatures (90 $^\circ\!C$ to max.115 $^\circ\!C$),a cleanliness level of at least

19/17/14 according to ISO 4406 is required.

Please contact us if these cleanliness leveles cannot be achieved.

Operational pressure range

Maximum pressure on port A or B (pressure data according to DIN 24312)

	Shaft end A, Z	Shaft end B, P
Nominal pressure P_{N}	40 MPa	35 MPa
Peak pressure P _{max}	45 MPa	40 MPa
summation pressure (A+B) 70 MPa	70 MPa

Please note:at the shaft end Z and P,a nominal pressure of $P_N=31.5MPa$ ($P_{max}=35MPa$) is permitted for the driven shaft end that is subjected to transverse bending (pinions, V-belts)!

Size 56 with shaft end Z:PN=35MPa, Pmax=40MPa

in cases of pulsating loading above 31.5MPa, we recommend the version with splined shaft A or splined shaft Z(sizes 45)

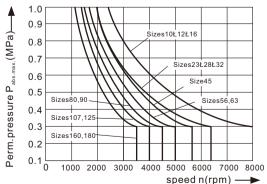
Direction of flow

Direction of rotation, viewed on shaft end

clockwise	counter-clockwise
A to B	B to A

Speed rang

No limit to minimum speed $n_{\text{min.}}$ If uniform motion is required, n_{min} must not be less than 50 rpm.


Shaft seal ring

Permissible pressure load

The service life of the shaft seal ring is affected by the speed of the motor and the case drain pressure. The permitted loading with intermittent case drain preessure depends on the rotational speed (see chart). Short-term(t < 5 min) pressure spikes of up to 1 MPa absolute are permitted.

The average permanent case drain pressure must not exceed 0.3 MPa absolute.

The pressure in the case must be equal to or greater than the external pressure on the shaft seal.

Temperature range

The FKM shaft seal is admissible for a housing temperature range from -25°C to +115°C

Technical Data

• Teble of values (theoretical values, ignoring nmin and ny; values rounded)

Size				10	12	16	2	23	28	3	32	45
Displacemen	t	Vg	mL/r	10.3	12.0	16.0) 2	2.9	28.	.1	32.0	45.6
Speed max		Nmax	min ⁻¹	8000	8000	800	0 63	300	630	00	6300	5600
		n maxlimit1)	min ⁻¹	8800	8800	880	0 69	900	690	00	6900	6200
Flow max.		qvmax	L/min	82	96	128	3 1	44	17	6	201	255
Torque consta	ants	Tĸ	Nm/MPa	1.64	1.9	2.5	3	.6	4.4	15	5.09	7.25
Torque at	°P=35 MPa	Т	Nm	57	67	88	1	26	15	6	178	254
	[•] P=40 MPa	Т	Nm	65	76	100) 1	44	17	8	204	290
Filling capaci	ty		L	0.17	0.17	0.1	7 0.	20	0.2	20	0.20	0.33
Mass momen	t of inertia		. 2									
around outpu	t shaft	J	kgm²	0.0004	0.0004	4 0.000	0.0	012	0.00)12	0.0012	0.0024
Mass(approx	.)		kg	5.4	5.4	5.4	g	.5	9.5	5	9.5	13.5
Size				56	63	80	90	107	,	125	160	180
Displacement	t	Vg	mL/r	56.1	63.0	80.4	90.0	107		125.0	160.4	180.0
Speed max	•	nmax	min ⁻¹	5000	5000	4500	4500	400		4000	3600	3600
opoouman		nmax limit1)	min ⁻¹	5500	5500	5000	5000	4400	-	4000	4000	4000
Flow max.		Qvmax	L/min	280	315	360	405	440	-	500	577	648
Torque consta	ants	Tk	Nm/MPa	8.9	10.0	12.7	17.0	19.9		25.4	28.6	31.8
Torque at	°P=35 MPa	т	Nm	312	350	445	501	595	-	697	889	1001
	[*] P=40 MPa	Т	Nm	356	400	508	572	680		796	1016	1144
Filling capaci			L	0.45	0.45	0.55	0.55	0.8		0.8	1.1	1.1
Mass momen	-											
around outpu	t shaft	J	kgm²	0.0042	0.0042	0.0072	0.0072	0.011	16 0	0.0116	0.0220	0.0220
Mass(approx)		kg	18	18	23	23	32		32	45	45

18 1) intermittent maximum speed:overspeed at discharge and over-running travel operations, t < 5 sec. and \triangle P < 15 MPa.

Determining the size

- $q_v = \frac{V_g \times n}{1000 \times \eta_v}$ Flow [L/min]
- $n = \frac{q_v \times 1000 \times \eta_v}{V_g}$ Speed [rpm]
- $Torque \quad T = \frac{V_g \times \triangle P \times \eta_{mh}}{20 \pi}$ [Nm]
- $\mathsf{P} = \frac{2\pi \times T \times n}{60000} = \frac{q_v \times \triangle \mathsf{P}}{600 \times \eta_t}$ Power [kW]

V_g = Displacement per revolution in mL/r
$\triangle P$ = Differential pressure in MPa
n = Speed in rpm
n, = Volumetric efficiency
η_{mh} = Mechanical-hydraulic efficiency
η_t = Overall efficiency

Technical Data

Permissible radial and axial loading on the drive shaft

The values given are maximum values and do not apply to continuous operation

Size			10	12	16	23	28	32	45	56
Radial force,max. ¹⁾ Fq at distance a (from shaft collar)	Fqmax	Ν	2350	2750	3700	4300	5400	6100	8150 ²⁾	9200 ²⁾
	а	mm	16	16	16	16	16	16	18	18
Axial force,max. ³⁾ +	+ F _{ax max}	Ν	320	320	320	500	500	500	630	800
	- Fax max	Ν	320	320	320	500	500	500	630	800
Permissible axial force/MPa operating pressure +	Fax per/MPa	N/MPa	30	30	30	52	52	52	70	87

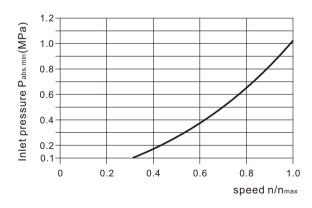
Size			63	80	90	107	125	160	180
Radial force,max. ¹⁾ Fq at distance a (from shaft collar) - a	Fqmax	Ν	10300	11500 ²⁾	12900	13600	15900	18400	20600
	а	mm	18	20	20	20	20	25	25
Axial force, max. ³⁾	+ F _{ax max}	Ν	800	1000	1000	12500	1250	1600	1600
	- Fax max	Ν	800	1000	1000	12500	1250	1600	1600
Permissible axial force/MPa operating pressure	87	106	106	129	129	167	167		

1) during intermittent operation

2) permissible max.radial force with shaft end Z:Fq max = 6500N

3) max.permissble axial force when stopped or when axial piston unit working in pressureless conditions

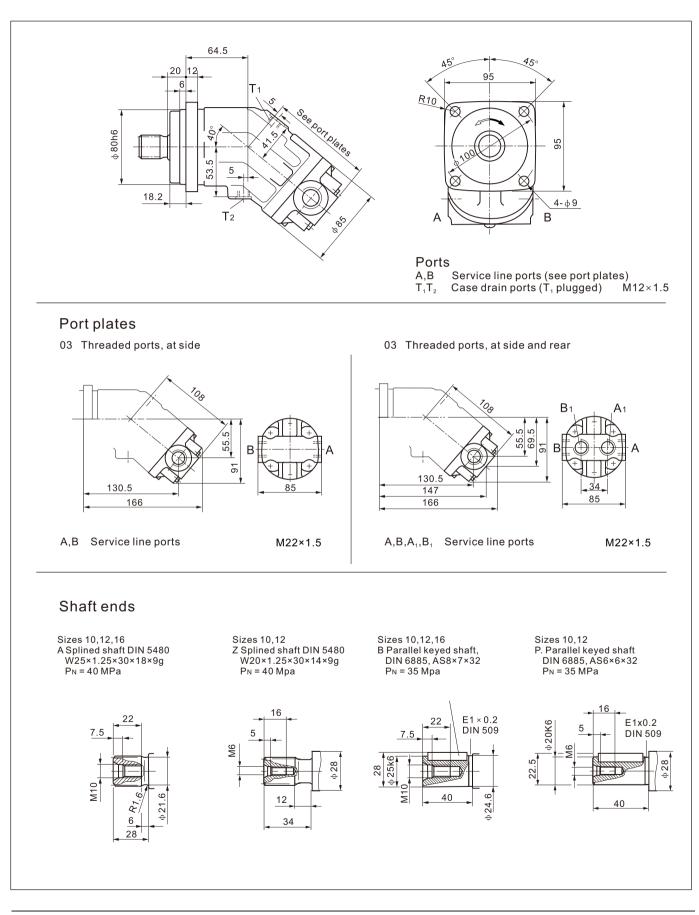
4) when stopped or when axial piston unit working in pressureless conditions. Higher forces are permitted when under pressure. Please contact us.


When considering the permissible axial force, the force-transfer direction must be taken into account:

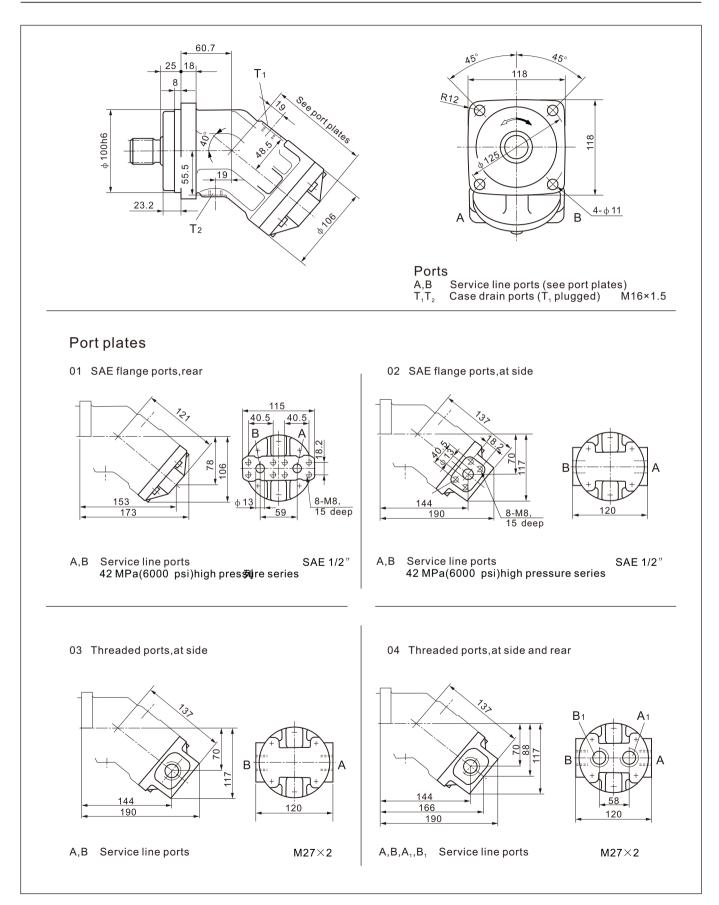
 $\pm F_{ax max}$ = increase in service life of bearings

 $\pm F_{ax max}$ = reduction in service life of bearings(avoid if at all possible)

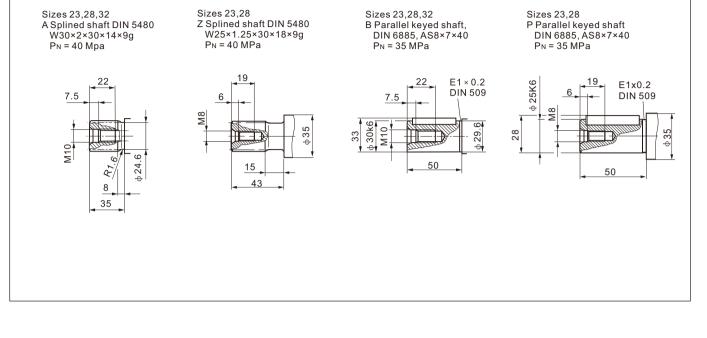
Minimum inlet pressure on service line port A(B)

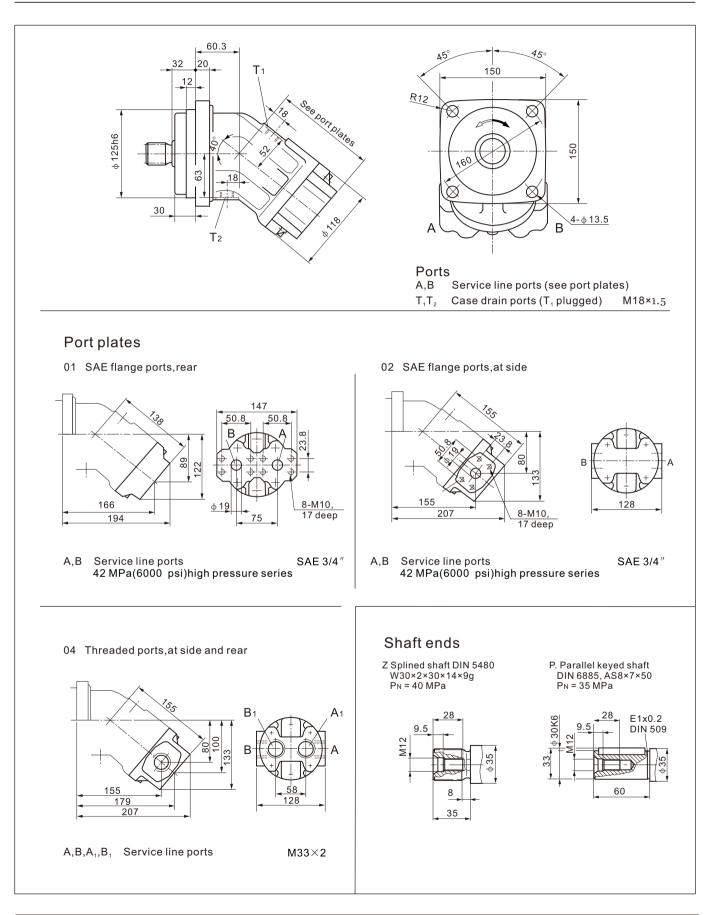

In order to avoid damage of the motor a minimum inlet pressure at the inlet zone must be assured. The minimum inlet pressure is related to the rotational speed of the fixed motor.

Please contact us if these conditions cannot be satisfied.

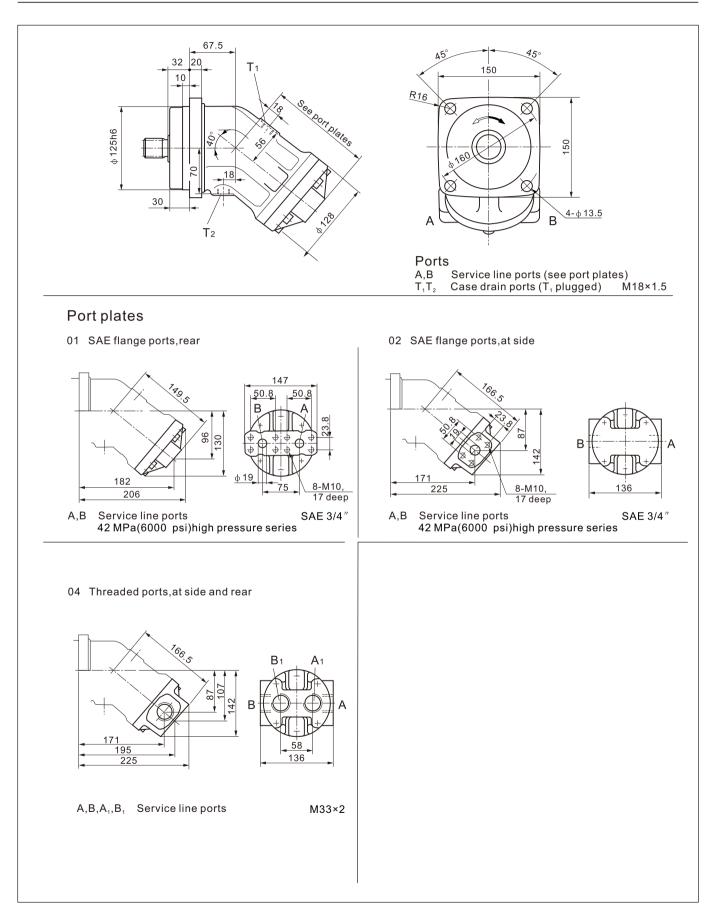


Installation dimensions Size 10,12,16

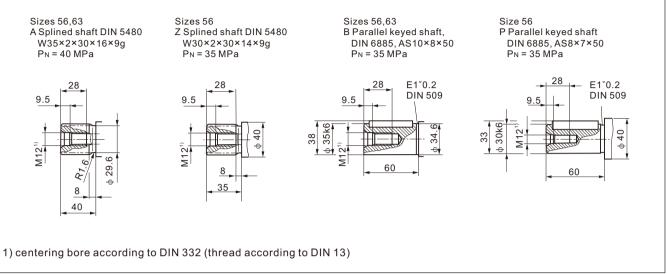

Installation dimensions Size 23,28,32

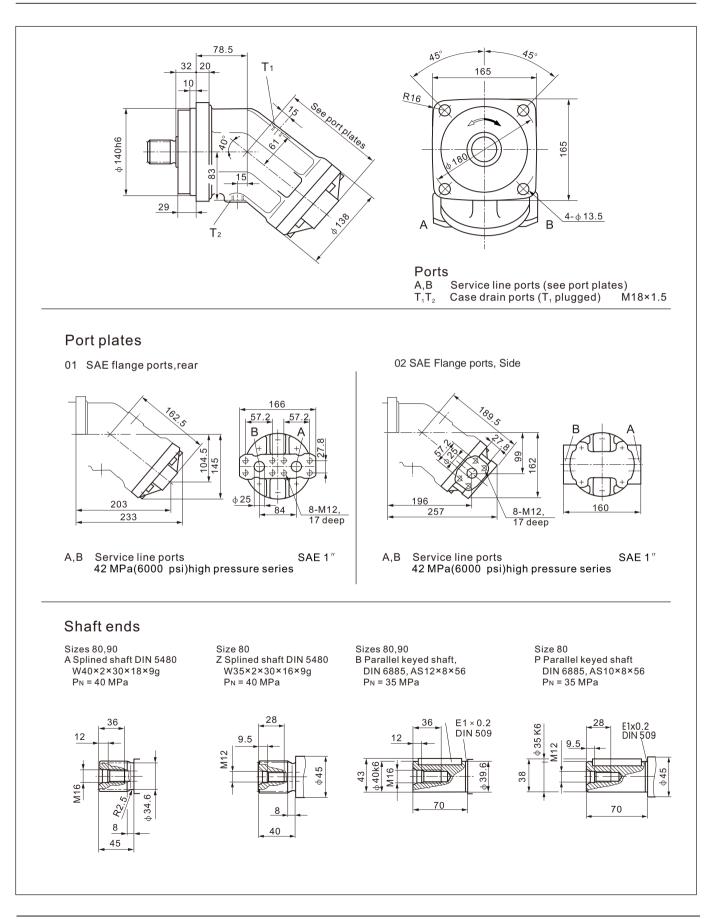

Installation dimensions Size 23,28,32

Shaft ends

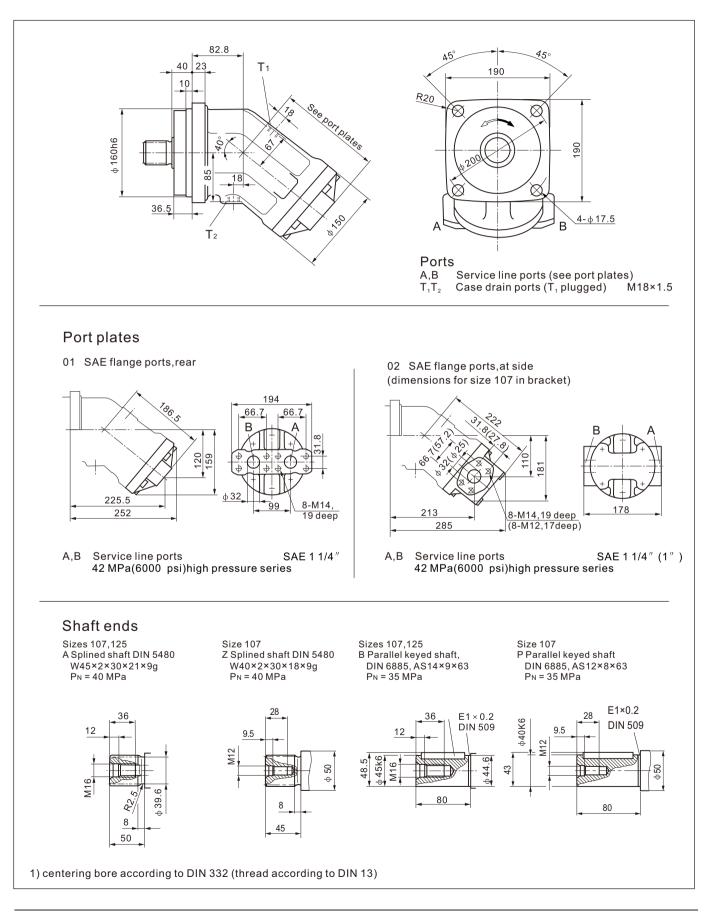


Installation dimensions Size 45

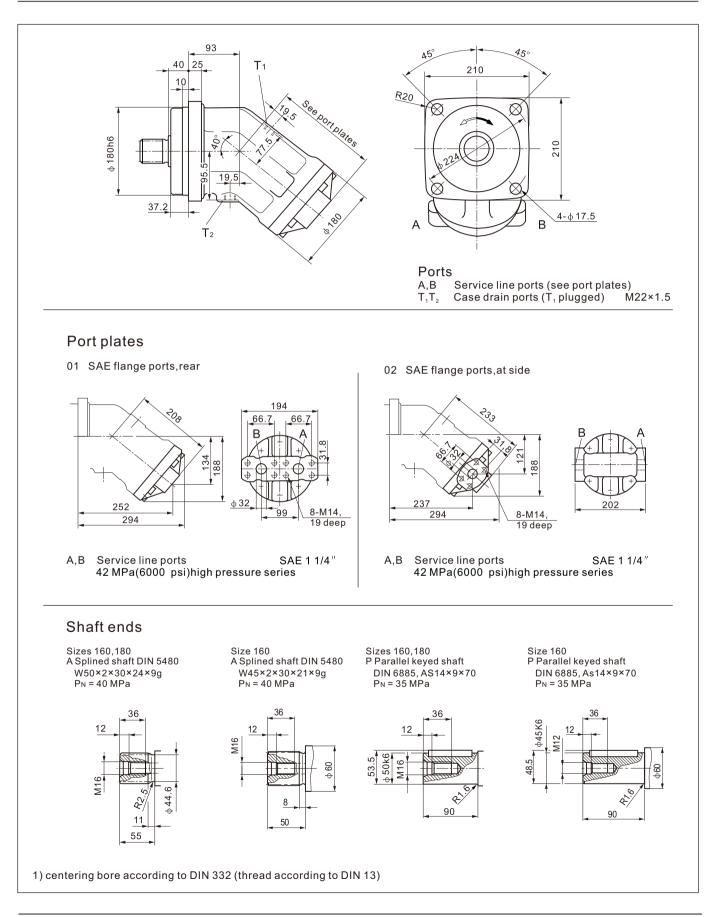

Installation dimensions Size 56,63


Installation dimensions Size 56,63

Shaft ends



Installation dimensions Size 80,90



Installation dimensions Size 107,125

Installation dimensions Size 160,180

Installation and Commissioning Notes

General

The motor case must be completely filled up with hydraulic fluid during startup and during operation (filling the case chamber). The motor must be started up at low speed and no load until the system has been bled completely.

If stopped for an extended period, fluid may drain out of the case through the service lines. When restarting, make sure that the case contains sufficient fluid.

The leakage fluid inside the case chamber must be drained off to the tank through the highest case drain port.

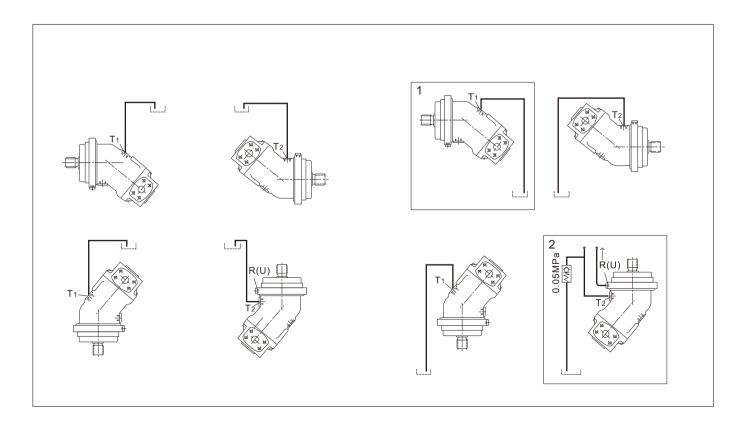
Installation Position

Optional. With installation position " shaft to the top " use motor with bleeding port R.

Installation below the tank

Motor below min. fluid level in the tank (standard)

- → Fill axial piston motor before startup via the highest case drain port
- → Run the motor at low speed until the system is bled completely (bleed through service line port A, B if tubing is long)
- → Minimum immersion depth of leakage line in tank:200mm (relative to the min. fluid level in the tank).
- → Additional measures required for installation position 2 (shaft facing up); with installation position 2,make sure that the motor case is completely full before starting up. Bleed at port R.


Order port R in clear text. An air pocket in the bearing area is leading to damage of the axial piston motor.

Installation above the tank

Motor above min. fluid level in tank

- ightarrow Proceed in same way as below the tank installation
- → Additional measures for installation position 1 and 2: If s topped for an extended period, fluid may drain out of the case chamber through the service lines (air enters through the shaft seal). The bearing will therefore not be properly lubricated when the motor is started up again. Fill the axial piston motor before restarting via the highest case drain port. Installation position 2: bleed at port R. Order port R in clear text
- → Additional measures required for installation position 2 (shaft facing up):

In this installation position the bearings will not be properly lubricated, even if there is still some fluid in the case chamber. Putting a non-return valve (opening pressure 0.05 MPa) in the leakage line can prevent the system emptying through the line.

